Part A: Chem 1A review

1) Determine the oxidation number of the elements in each of the following compounds:
a) $\mathrm{H}_{2} \mathrm{CO}_{3}$
b) N_{2}
c) $\mathrm{Zn}(\mathrm{OH}) 4^{2-}$
2) Identify the species being oxidized and reduced in each of the following reactions:
a) $\mathrm{Cr}^{+}{ }_{(\mathrm{aq})}+\mathrm{Sn}^{4+}{ }_{(\mathrm{aq})} \rightarrow \mathrm{Cr}^{3+}{ }_{(\mathrm{aq})}+\mathrm{Sn}^{2+}{ }_{(\mathrm{aq})}$
b) $3 \mathrm{Hg}^{2+}{ }_{(\mathrm{aq})}+2 \mathrm{Fe}_{(\mathrm{s})} \rightarrow 3 \mathrm{Hg}_{2(\mathrm{l})}+2 \mathrm{Fe}^{3+}{ }_{(\mathrm{aq})}$
c) $3 \mathrm{CuS}_{(\mathrm{s})}+8 \mathrm{H}^{+}(\mathrm{aq})+2 \mathrm{NO}_{3}^{-}(\mathrm{aq}) \rightarrow 3 \mathrm{Cu}^{2+}(\mathrm{aq})+3 \mathrm{~S}(\mathrm{~s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I})+2 \mathrm{NO}(\mathrm{g})$

Part B: Balancing Oxidation - Reductions under Acidic Conditions

3) Balance the redox reaction in acidic solution

$$
\mathrm{Fe}^{2+}(\mathrm{aq})+\mathrm{MnO}_{4}^{-}(\mathrm{aq}) \rightarrow \mathrm{Fe}_{(\mathrm{aq})}^{3+}+\mathrm{Mn}^{2+}(\mathrm{aq})
$$

Step 1) Assign oxidation numbers.

Step 2) Separate the overall reaction into two half-reactions: one for oxidation and one for reduction. Oxidation:

Reduction:

Step 3) Balance each half-reaction with respect to mass (reminder: acidic conditions)

Step 4) Balance each half reaction with respect to charge by adding electrons.

Step 5,6) Multiply the half reactions by a number to get the electrons to balance and add the two half reactions together

Part C: Balancing Oxidation - Reductions under Basic Conditions

4) What is the difference between balancing a Redox reaction in a basic solution than in an acidic solution? Is there a difference?
5) Balance the following reaction occurring in basic solution

$$
\mathrm{ClO}_{(\mathrm{aq})}^{-}+\mathrm{MnO}_{2}(\mathrm{~s}) \rightarrow \mathrm{MnO}_{4}^{2-}(\mathrm{aq})+\mathrm{Cl}_{(\mathrm{aq})}^{-}
$$

Step 1) Assign oxidation numbers.

Step 2) Separate the overall reaction into two half-reactions: one for oxidation and one for reduction.
Oxidation:

Reduction:

Step 3) Balance each half-reaction with respect to mass (tip: balance in acidic then basic conditions)

Step 4) Balance each half reaction with respect to charge by adding electrons.

Step 5,6$)$ Multiply the half reactions by a number to get the electrons to balance and add the two half reactions together

